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Abstract. Due to the burstiness of video traffic, video modeling is very impor-
tant in order to evaluate the performance of future wired and wireless networks. 
In this paper, we investigate the possibility of modeling this type of traffic with 
well-known distributions. Our results regarding the behavior of single video-
conference traces provide significant insight and help to build a Discrete Auto-
regressive (DAR(1)) model to capture the behavior of multiplexed     MPEG-4 
videoconference movies from VBR coders.  

1   Introduction 

As traffic from video services is expected to be a substantial portion of the traffic car-
ried by emerging wired and wireless networks, statistical source models are needed 
for Variable Bit Rate (VBR) coded video in order to design networks which are able 
to guarantee the strict Quality of Service (QoS) requirements of the video traffic. 
Video packet delay requirements are strict, because delays are annoying to a viewer; 
whenever the delay experienced by a video packet exceeds the corresponding maxi-
mum delay, the packet is dropped, and the video packet dropping requirements are 
equally strict.  

Hence, the problem of modeling video traffic, in general, and videoconferencing, 
in particular, has been extensively studied in the literature. VBR video models which 
have been proposed in the literature include first-order autoregressive (AR) models 
[2], discrete AR (DAR) models [1, 3], Markov renewal processes (MRP) [4], MRP 
transform-expand-sample (TES) [5], finite-state Markov chain [6, 7], and Gamma-
beta-auto-regression (GBAR) models [8, 9]. The GBAR model, being an autoregres-
sive model with Gamma-distributed marginals and geometric autocorrelation,  
captures data-rate dynamics of VBR video conferences well; however, it is not suit-
able for general MPEG video sources [9]. 

In [3] the authors show that H.261 videoconference sequences generated by differ-
ent hardware coders, using different coding algorithms, have gamma marginal distri-
butions (this result was also employed by [10], which proposes an Autoregressive 
Model of order one for sequences of H.261 encoding) and use this result to build a 
Discrete Autoregressive (DAR) model of order one, which works well when several 
sources are multiplexed.  
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In [11-13], different approaches are proposed for MPEG-1 traffic, based on the 
lognormal, Gamma, and a hybrid Gamma/lognormal distribution model, respectively. 
Standard MPEG encoders generate three types of video frames: I (intracoded), P 
(predictive) and B (bidirectionally predictive); i.e., while I frames are intra-coded, the 
generation of P and B frames involves, in addition to intra-coding, the use of motion 
prediction and interpolation techniques. I frames are, on average, the largest in size, 
followed by P and then by B frames.  

An important feature of common MPEG encoders (both hardware and software) is 
the manner in which frame types are generated. Typical encoders use a fixed Group-
of-Pictures (GOP) pattern when compressing a video sequence; the GOP pattern 
specifies the number and temporal order of P and B frames between two successive I 
frames. A GOP pattern is defined by the distance N between I frames and the distance 
M between P frames. In practice, the most frequent value of M is 3 (two successive B 
frames) while the most frequent values of N are 6, 12, and 15, depending on the re-
quired video quality and the transmission rate.  

In this work, we focus on the problem of modeling videoconference traffic from 
MPEG-4 encoders (the MPEG-4 standard is particularly designed for video streaming 
over wireless networks [14]), which is a relatively new and yet open issue in the rele-
vant literature.  

2   Videoconference Traffic Model 

A. Frame-Size Histograms  

We use four different long sequences of MPEG-4 encoded videos (from [15]) with 
low or moderate motion (i.e, traces with very similar characteristics to the ones of ac-
tual videoconference traffic), in order to derive a statistical model which fits well the 
real data. The length of the videos varies from 45 to 60 minutes and the data for each 
trace consists of a sequence of the number of cells per video frame and the type of 
video frame, i.e., I, P, or B. We use packets of ATM cell size throughout this work, 
but our modeling mechanism can be used equally well with packets of other sizes. We 
have investigated the possibility of modeling the four videoconference videos with 
quite a few well-known distributions and our results show that the best fit among 
these distributions is achieved for all the traces studied with the use of the Pearson 
type V distribution. The Pearson type V distribution (also known as the “inverted 
Gamma” distribution) is generally used to model the time required to perform some 
tasks (e.g., customer service time in a bank); other distributions which have the same 
general use are the exponential, gamma, weibull and lognormal distributions [20]. 
Since all these distributions have been often used for video traffic modeling in the lit-
erature, they have been chosen as fitting candidates in order to compare their model-
ing results in the case of MPEG-4 videoconferencing. 

The four traces under study are, respectively, a video stream extracted and ana-
lyzed from a camera showing the events happening within an office (Video Name: 
“Office Cam”); a video stream extracted and analyzed from a camera showing a lec-
ture (Video Name: “Lecture Room Cam”); a video stream extracted and analyzed 
from a talk-show (Video Name: “N3 Talk”); a video stream extracted and analyzed 
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from another talk-show (Video Name: “ARD Talk”). For each one of these movies 
we have used the high quality coding version, in which new video frames arrive every 
40 msecs, in Quarter Common Intermediate Format (QCIF) resolution. The compres-
sion pattern used to encode all the examined video streams is IBBPBBPBBPBB, i.e., 
N=12, M=3, according to the definitions used in Section 1. 

The frame-size histogram based on the complete VBR streams is shown, for all 
four sequences, to have the general shape of a Pearson type V distribution (this is 
shown in Figure 1, which presents indicatively the histogram for the lecture sequence; 
the other three traces have similar histograms).  
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Fig. 1. Histogram for the frame size of the lecture camera trace 

B. Statistical Tests and Autocorrelations 

The statistical test was made with the use of Q-Q plots. The Q-Q plot is a powerful 
goodness-of-fit test [3, 20], which graphically compares two data sets in order to de-
termine whether the data sets come from populations with a common distribution (if 
they do, the points of the plot should fall approximately along a 45-degree reference 
line). More specifically, a Q-Q plot is a plot of the quantiles of the data versus the 
quantiles of the fitted distribution (a z-quantile of X is any value x such that 
P ((X ≤ x) = z). 

In Figure 2, we have plotted the 0.01-, 0.02-, 0.03-,… quantiles of the actual trace 
versus the respective quantiles of the various distribution fits for the ARD Talk trace 
(the results are similar for all the traces).  

The Pearson V distribution fit is shown to be the best in comparison to the gamma, 
weibull, lognormal and exponential distributions, which are presented here (compari-
sons were also made with the negative binomial and Pareto distributions, which were 
also worse fits than the Pearson V). However, as already mentioned, although the 
Pearson V was shown to be the better fit among all distributions, the fit is not 
perfectly accurate. This was expected, as the gross differences in the number of bits 
required to represent I, P and B frames impose a degree of periodicity on MPEG-
encoded streams, based on the cyclic GOP formats. Any model which purports to 
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Fig. 2. Q-Q plot for the ARD TALK trace  

reflect the frame-by-frame correlations of an MPEG-encoded video stream must ac-
count for GOP cyclicity, otherwise the model could produce biased estimates of cell 
loss rate for a network with some given traffic policing mechanism [9, 13].   

Hence, we proceeded to study the frame size distribution for each of the three dif-
ferent video frame types (I, P, B), in the same way we studied the frame size distribu-
tion for the whole trace. This approach was also used in [9, 19]. 

Another approach, similar to the above, was proposed in [11]. This scheme uses 
again lognormal distributions and assumes that the change of a scene alters the aver-
age size of I frames, but not the sizes of P and B frames. However, it is shown in  
[4, 12] that the average sizes of P and B frames can vary 20% and 30% (often more 
than that), respectively, in subsequent scenes, therefore the size changes are statisti-
cally significant.  

As it will be shown from our results, none of the above choices of distribution fits 
are relevant to the case of I, P and B frames of MPEG-4 videoconference traffic.  

The mean, peak and variance of the video frame sizes for each video frame type (I, 
P and B) of each movie were taken again from [15] and the Pearson type V parame-
ters are calculated based on the formulas for the mean and variance of Pearson V (the 
parameters for the other fitting distributions are similarly obtained based on their re-
spective formulas). The autocorrelation coefficient of lag-1 was also calculated for all 
types of video frames of all four movies, as it shows the very high degree of correla-
tion between successive frames of the same type (it was larger than 0.7 in all the 
cases, and in most of the cases it was larger than 0.9). The autocorrelation coefficient 
of lag-1 will be used in the following Sections of this work, in order to build a 
Discrete Autoregressive Model for each video frame type. 

From the five distributions examined (Pearson V, exponential, gamma, lognormal, 
weibull) the Pearson V distribution once again provided the best fitting results for 11 
of the 12 cases examined, i.e., for all video frame types of the office, N3 Talk and lec-
ture camera traces, and for the P, B frame types of the ARD Talk trace. The only case 
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in which the Pearson V distribution exhibits worse fitting results than another distri-
bution is that of the N3 Talk P frames, where the best fitting result is derived with the 
use of the lognormal distribution (still, even in this case the difference in the good-
ness-of-fit results is marginal).  

In order to further verify the validity of our results, we performed Kolmogorov-
Smirnov tests for all the 12 fitting attempts. The Kolmogorov-Smirnov test (KS-test) 
tries to determine if two datasets differ significantly. The KS-test has the advantage of 
making no assumption about the distribution of data, i.e, it is non-parametric and dis-
tribution free. The KS-test uses the maximum vertical deviation between the two 
curves as its statistic D. The results of our KS-tests (Figure 3 is a characteristic exam-
ple of these results), confirm our respective conclusions based on the Q-Q plots (i.e., 
the Pearson V distribution is the best fit).  

Although controversy persists regarding the prevalence of Long Range Depend-
ence (LRD) in VBR video traffic ([16, 17, 23]), in the specific case of MPEG-
encoded video, research has shown that LRD is important [11, 18]. The results of our  
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Fig. 3. KS-test (Comparison Percentile Plot) for the ARD TALK I-frames 
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Fig. 4. Autocorrelation function of the lecture camera trace 
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study on single MPEG-4 videoconferencing agree with this conclusion. The autocor-
relation function for the lecture camera trace is shown in Figure 4 (the respective  
Figures for the other three traces are similar). Two apparent periodic components are 
observed, one containing lags with low autocorrelation and the other lags with high 
autocorrelation. We observe that autocorrelation remains high even for large numbers 
of lags and that both components decay very slowly; both these facts are a clear indi-
cation of the importance of LRD. The existence of strong autocorrelation coefficients 
is due to the periodic recurrence of I, B and P frames. 

Although the fitting results when modeling each video frame type separately, with 
the use of the Pearson V distribution, are clearly better than the results produced by 
modeling the whole sequence uniformly, the high autocorrelation shown in the Figure 
above can never be perfectly “captured” by a distribution generating frame sizes in-
dependently, according to a declared mean and standard deviation, and therefore none 
of the fitting attempts (including the Pearson V), as good as they might be, can 
achieve perfect accuracy. However, these results lead us to extend our work in order 
to build DAR models which inherently use the autocorrelation coefficient of lag-1 in 
their estimations and which will be shown to capture well the behavior of multiplexed 
MPEG-4 videoconference movies, by generating frame sizes independently for I, P 
and B frames.  

3   The DAR (1) Model 

A Discrete Autoregressive model of order p, denoted as DAR(p) [21], generates a sta-
tionary sequence of discrete random variables with an arbitrary probability distribu-
tion and with an autocorrelation structure similar to that of an Autoregressive model. 
DAR(1) is a special case of a DAR(p) process and it is defined as follows: let {Vn} 
and {Yn} be two sequences of independent random variables. The random variable Vn 
can take two values, 0 and 1, with probabilities 1-ρ and ρ, respectively. The random 
variable Yn has a discrete state space S and P{Yn = i) = π(i). The sequence of random 
variables {Xn} which is formed according to the linear model:  

Xn = Vn Xn-1 + (1- Vn) Yn (1) 

is a DAR(1) process. 
A DAR(1) process is a Markov chain with discrete state space S and a transition 

matrix: 

P = ρI + (1-ρ) Q (2) 

where ρ is the autocorrelation coefficient, I is the identity matrix and Q is a matrix 
with Qij = π(j) for i, j є S.  

Autocorrelations are usually plotted for a range W of lags. The autocorrelation can 
be calculated by the formula: 

ρ(W)= E[(Xi - µ)(Xi+w - µ)]/σ2 (3) 

where µ is the mean and σ2 the variance of the frame size for a specific video trace. 



52 A. Lazaris, P. Koutsakis, and M. Paterakis 

4   DAR(1) Modeling Results and Discussion 

As in [3], where a DAR(1) model with negative binomial distribution was used to 
model the number of cells per frame of VBR teleconferencing video, we want to build 
a model based only on parameters which are either known at call set-up time or can 
be measured without introducing much complexity in the network. DAR(1) provides 
an easy and practical method to compute the transition matrix and gives us a model 
based only on four physically meaningful parameters, i.e., the mean, peak, variance 
and the lag-1 autocorrelation coefficient ρ of the offered traffic (these correlations, as 
already explained, are typically very high for videoconference sources). According to 
[22], the DAR(1) model can be used with any marginal distribution. 

As explained in our work on modeling a single MPEG-4 videoconference trace, the 
lag-1 autocorrelation coefficient for the I, P and B frames of each trace is very high in 
all the studied cases. Therefore, we proceeded to build a DAR(1) model for each 
video frame type for each one of the four traces under study. More specifically, in our 
model the rows of the Q matrix consist of the Pearson type V probabilities (f0, f1, … 
fk, FK), where FK= Σk > K fk, and K is the peak rate. Each k, for k<K, corresponds to 
possible source rates less than the peak rate of K.  

From the transition matrix in (2) it is evident that if the current frame has, for ex-
ample, i cells, then the next frame will have i cells with probability ρ+(1-ρ)*fi, and 
will have k cells, k ≠ i, with probability (1-ρ)*fk. Therefore the number of cells per 
video frame stays constant from one (I, P or B) video frame to the next (I, P or B) 
video frame, respectively, in our model with a probability slightly larger than ρ (for 
example, in the ARD Talk trace, with probability slightly larger than 93.23%, 
77.81%, 94.49% for the I, P and B frames of the trace, respectively). This is evident 
in Figure 5, where we compare the actual I frames of the ARD Talk trace and their re-
spective DAR(1) model and it is shown that the DAR(1) model’s data produce a 
“pseudo-trace” with a periodically constant number of cells for a number of video 
frames. This causes a significant difference when comparing a segment of the  
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Fig. 5. Comparison for a single trace between a 2000 frame sequence of the actual I frames 
sequence of the ARD Talk trace and the respective DAR(1) model in number of cells/frame  
(Y-axis) 
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sequence of I, P, or B frames of the actual ARD Talk video trace and a sequence of 
the same length produced by our DAR(1) model. The same vast differences also ap-
peared when we plotted the DAR(1) models versus the actual I, P and B video frames 
of the actual N3Talk, office camera and lecture camera traces for a single movie. 

However, our results have shown that the differences presented above become 
small for all types of video frames and for all the examined traces for a superposition 
of 5 or more sources, and are almost completely smoothed out in most cases, as the 
number of sources increases (the authors in [3] have reached similar conclusions for 
their own DAR(1) model and they present results for a superposition of 20 traces). 
This is clear in Figures 6-8, which present the comparison between our DAR(1) 
model and the actual I, P, B frames’ sequences of the ARD Talk video, for a superpo-
sition of 20 traces (the results were perfectly similar for all video frame types of the 
other three traces; we have used the initial trace sequences to generate traffic for 20 
sources, by using different starting points in the trace). The common property of all 
these results (derived by using a queue to model multiplexing and processing frames 
in a FIFO manner) is that the DAR(1) model seems to provide very accurate fitting 
results for P and B frames, and relatively accurate for I frames.  
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Fig. 6. Comparison for 20 superposed sources between a 2000 I frame sequence of the actual 
ARD Talk trace and the respective DAR(1) model in number of cells/frame (Y-axis) 
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Fig. 7. Comparison for 20 superposed sources between a 2000 P frame sequence of the actual  
ARD Talk trace and the respective DAR(1) model in number of cells/frame (Y-axis) 
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Fig. 8. Comparison for 20 superposed sources between a 2000 B frame sequence of the actual 
ARD Talk trace and the respective DAR(1) model in number of cells/frame (Y-axis) 

However, although Figures 6-8 suggest that the DAR(1) model captures very well 
the behavior of the multiplexed actual traces, they do not suffice as a result. There-
fore, we proceeded again with testing our model statistically in order to study whether 
it produces a good fit for the I, P, B frames for the trace superposition. For this reason 
we have used again Q-Q plots, and we present indicatively some of these results in 
Figures 9-10, where we have plotted the 0.01-, 0.02-, 0.03-,… quantiles of the actual 
B and I video frames’ types of the N3 Talk trace versus the respective quantiles of the 
respective DAR(1) models, for a superposition of 20 traces. As shown in Figure 9, 
which presents the comparison of actual B frames with the respective DAR(1) mod-
els, the points of the Q-Q plot fall almost completely along the 45-degree reference 
line, with the exception of the first and last 3% quantiles (left- and right-hand tail), for 
which the DAR(1) model underestimates and overestimates, respectively, the prob-
ability of frames with a very small (large) number of cells. The very good fit shows 
that the superposition of the B frames of the actual traces can be modeled very well by 
a respective superposition of data produced by the DAR(1) model (similar results 
were derived for the superposition of P frames), as it was suggested in Figures 7, 8. 
Figure 10 presents the comparison of actual I frames with the respective DAR(1) 
model, for the N3 Talk trace. Again, the result suggested from Figure 6, i.e., that our 
method for modeling I frames of multiplexed MPEG-4 videoconference streams pro-
vides only relative accuracy, is shown to be valid with the use of the Q-Q plots. The 
results for all the other cases which are not presented in Figures 9-10 are similar in 
nature to the ones shown in the Figures.  

One problem which could arise with the use of DAR(1) models is that such models 
take into account only short range dependence, while, as shown earlier, MPEG-4  
videoconference streams show LRD. This problem is overcome by our choice of 
modeling I, P and B frames separately. This is shown in Figure 11. It is clear from the 
Figure that, even for a small number of lags, (e.g., larger than 10) the autocorrelation 
of the superposition of frames decreases quickly, for all the traces. Therefore, al-
though in some cases the DAR(1) model exhibits a quicker decrease than that of the 
actual traces’ video frames sequence, this has minimal impact on the fitting quality of 
the DAR(1) model. This result further supports our choice of using a first-order 
model.  
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Fig. 9. Q-Q plot of the DAR(1) model versus the actual video for the B frames of the N3 Talk 
trace, for 20 superposed sources 
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Fig. 10. Q-Q plot of the DAR(1) model versus the actual video for the I frames of the N3 Talk 
trace, for 20 superposed sources 
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Fig. 11. Autocorrelation vs. number of lags for the I frames of the actual N3 Talk trace and the 
DAR(1) model, for 20 superposed sources 
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